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Introduction 5 

A spring-run chinook salmon (SRCS) juvenile production estimate (JPE) was commissioned 6 
in 2020 to inform operation of the State Water Project run by the California Department of 7 
Water Resources so as to minimize take of SRCS. 8 

Monitoring programs exist to collect data at different points of the SRCS lifecycle, and 9 
several of these were used to inform development of the JPE. Monitoring programs 10 
included juvenile salmon outmigration monitoring using rotary screw traps (RSTs), 11 
spawning adult surveys (redd surveys, holding surveys, and carcass surveys), and 12 
upstream passage monitoring via video systems. RST data and associated efficiency trials 13 
provide estimates of juvenile abundance. Spawning adult surveys provide estimates of the 14 
spawning adult population, though survey types collect data at different points in the adult 15 
life stage. Upstream passage data is used to estimate the abundance of adult 16 
escapement, or adults returning upstream to spawn. Each tributary collects these data 17 
differently, in different formats, and with different assumptions informed by the variable 18 
habitat, institutional knowledge, and geographic variation. 19 

These data were aggregated, documented, and standardized across tributaries to be used 20 
in the JPE. The JPE model system consists of several submodels that describe 21 
relationships at key points in the SRCS lifecycle (Figure 1). To take advantage of the 22 
multiple data types available, a submodel was created to model the relationship between 23 
upstream passage and spawner abundance. The Passage to Spawner (P2S) submodel 24 
explicitly models prespawn mortality for four key tributaries and uses this relationship to 25 
predict spawner abundance from upstream passage (Figure 2). 26 
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 27 

Figure 1. A conceptual model outlining the relationships between potential submodels and 28 
data in a Spring Run JPE. 29 

As part of the JPE model system, the P2S model provides resiliency for years where data 30 
may be missing (i.e. for years where upstream passage data was collected but spawner 31 
surveys were not conducted), provides an estimate of prespawn mortality, and utilizes all 32 
possible data. However, the P2S relies on upstream passage data which, by itself, is 33 
considered by monitoring programs to be inaccurate. Using the P2S in any river system 34 
should be informed by these sources of error, as well as key assumptions detailed below. 35 

Methods 36 

Data Collection 37 

Three categories of data were accessed and aggregated for this study: upstream passage, 38 
spawner abundance, and environmental data. Detailed methods describing monitoring 39 
programs in each tributary, the aggregation of those data, and evaluation of data types can 40 
be found in Appendix A. There were four tributaries for which upstream passage and a 41 
spawner survey were recommended for use in development of the JPE: Battle Creek, Clear 42 
Creek, Deer Creek, and Mill Creek. Butte Creek, Feather River, and Yuba River either did 43 
not have those data at the time of development or had limitations that precluded those 44 
data from use in the P2S model (Appendix A). Deer Creek and Mill Creek data are in the 45 
process of QA/QC and were included in these analyses. However, not all of these 46 
tributaries are precluded from being used in the P2S in the future: Yuba River has begun to 47 
collect upstream passage data and Butte Creek has the necessary data but will require 48 
more documentation of drawbacks and specifics of the system. The sample sizes for 49 
Battle and Clear Creek were determined by the number of years where upstream passage 50 
overlapped with spawner abundance and range from 20 to 21 years (Table 1). 51 

Environmental covariate selection 52 
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Several environmental variables thought to be associated with prespawn mortality were 53 
assessed in the model: flow, water temperature and water year type. Temperature data 54 
were collected from gauges located as close to the sampling sites as possible. Flow was 55 
collected from gauges operated in some cases at the RSTs. Water year type was accessed 56 
from DWR and standardized into a binary variable. Data were downloaded from the source 57 
using APIs. Passage timing was considered; however, limited data reduced the sample size 58 
of the datasets for some tributaries so much as to remove them from candidacy for the 59 
model due to lack of statistical power. Several forms of available environmental variables 60 
were considered and tested for inclusion in P2S models (see Appendix B). The covariates 61 
that we ended up using were maximum flow during holding and spawning months, sum of 62 
days over a threshold of 20 degrees Celsius during holding and spawning months (source), 63 
and water year type. All continuous environmental variables (flow and temperature) were 64 
standardized and centered within streams before performing any analyses so that the 65 
scale of the data did not affect results. Water year type was coded as a binary variable for 66 
wet (wet, above normal) vs. dry (below normal, dry, critical). 67 

Full code and documentation of this process are available on the SRJPEdata package 68 
Github.  69 

Passage to Spawner (P2S) Model 70 

The model predicts spawner abundance  𝑆"!  a function of annual observed passage 𝑃!  and 71 
the annual conversion rate of upstream passage counts to spawner counts 𝑅!.  72 

(1) 𝑆"! = 𝑃! ∗ 𝑅!  73 

The likelihood function assumes the error between 𝑆"!  and observed spawner count 𝑆!  is 74 
poisson-distributed (Eq. 2). 75 

(2)	𝑆! ∼ 𝑃,𝑆"!- 76 

The conversion rate 𝑅!  was modeled as a function of the selected environmental covariate 77 
𝑋!, the conversion rate fixed effect parameter 𝛽", and a log-scale random year effect 𝛽#!  78 
(Eq. 3, Figure 3). 79 

(3)	𝑅! = 𝑒𝑥𝑝 4log 4𝛽#!8 + 𝛽" ∗ 𝑋!8 80 
 81 
𝑋!  is a standardized value:  82 

(4)	𝑋! =	
𝑥! − 	𝜇
𝜎 	 83 

Where 𝑥!  is the actual annual value for that covariate. Year-specific random effects 84 
𝛽#!were modeled as lognormally distributed around a mean 𝜇$!  and standard deviation 85 
𝜎$!, hyperparameters that determine the distribution of 𝛽# across years: 86 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204274
https://srjpe.github.io/SRJPEdata/articles/prep_environmental_covariates.html
https://srjpe.github.io/SRJPEdata/articles/prep_environmental_covariates.html
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(5)	log 4𝛽#!8 ∼ 𝑁,𝜇$! , 𝜎$!- 87 

𝛽#!  is estimated on a log scale to restrict to positive values but allow for values over 1, and 88 
that the distribution of 𝛽#!  is lognormal as determined by hyperparameters 𝜇%  and 𝜎%. 89 

The key output of the model is the conversion rate 𝑅!  for each year and the estimated 90 
effect of the environmental covariate, captured in the parameter 𝛽". Important to note is 91 
that this model makes several assumptions about sex ratio in our spawner count data: the 92 
sex ratio was assumed to be 0.5, and for redds specifically (which were used for both 93 
Battle and Clear Creeks), each female was assumed to create one redd. Our parameter 94 
𝛽#!, which is a random year effect for the intercept of the model predicting conversion 95 
rate, acts as a catch-all term for many year-specific sources of variation and factors like 96 
sex ratio, redds-per-female and error in redd counts (for streams using redd count), and 97 
snorkeler detection (for snorkel surveys).  98 

Estimation 99 

The model was fit to each tributary separately in two phases. The first phase was to 100 
identify, through the model, the environmental covariate with the most statistical power to 101 
predict spawner abundance. The model was fit with flow, temperature, water year type, 102 
and a “null” covariate (coded as 0). Before comparing these models, datasets were 103 
truncated only to those years where every covariate was available. Model output for a 104 
tributary was compared across each environmental covariate for accuracy and precision 105 
to identify a) whether flow, temperature, or water year type improved the accuracy of the 106 
model over the null model, and b) if so, which covariate provided the best fit. Criteria for 107 
selecting the best fit was as follows: 108 

• Proportion of variance in predicted spawners explained by fixed effect 𝛽" - 109 
measured as the proportion of variance explained by the fixed effect (𝑅&) 110 

• Greater effect of the fixed effect 𝛽" - measured as the magnitude of the posterior 111 
mean of the fixed effect 𝛽" 112 

• Least variance in estimate of the fixed effect 𝛽" - measured as the magnitude of the 113 
posterior standard deviation of the fixed effect 𝛽" 114 

• Least variance in forecasted spawner abundance - magnitude of the posterior 115 
standard deviation of each spawner abundance forecast 116 

o For continuous environmental variables, the two forecasts use the mean 117 
value and the mean value + 1 standard deviation 118 

o For water year type, the two forecasts use dry (0) and wet (1) years. 119 
 120 

The second phase was to evaluate performance of the model in forecasting and 121 
conversion rate. Because for all continuous environmental variables the forecast would 122 
rely on modeled future temperature and flow which have high uncertainty, further analyses 123 
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were based on results from fitting each tributary’s data to the model using the only discrete 124 
variable: water year type. 125 

The STAN model is a mixed-effects model and as such is expected to produce predicted 126 
spawner counts that closely match observed spawner counts, with either the fixed effect 127 
or random effects absorbing much of the error. To assess the suitability of the model’s 128 
fixed effect (which can be forecasted using environmental covariate data), we looked at 129 
the predicted vs. spawner counts for each stream and the R squared value of that 130 
relationship, and we plotted the conversion rate (which incorporates the fixed effect) and 131 
random year effect parameter estimate for each year and stream to assess their 132 
magnitude. 133 

Results 134 

Environmental covariate selection 135 

Battle and Clear Creek, when run with the null covariate, produced an 𝑅A  statistic above 136 
1.05 for 𝛽", indicating non-convergence for the model (Table 2). The best environmental 137 
covariate, based on the magnitude of variance explained by the fixed effect, was water year 138 
type for Battle Creek and growing degree days for Clear Creek.  139 

By criteria of the highest median estimate of 𝛽", water year type was the best performing 140 
covariate for Battle and Clear Creek (0.149 and 0.519, respectively). By criteria of the least 141 
variance around this parameter, growing degree days was the best performer for Battle 142 
Creek (standard deviation of 0.111) and maximum flow for Clear Creek (standard deviation 143 
of 0.219).  144 

The variables for Battle and Clear Creek that showed the least variance in forecasting at 145 
average conditions were growing degree days for Battle (standard deviation of 53.8) and 146 
passage index for Clear Creek (standard deviation of 309). Forecasts across all variables 147 
showed high uncertainty. 148 

Model fit and performance 149 

The predicted spawner counts very closely matched the observed spawner counts (Figure 150 
7). The 𝑅& of a linear regression of predicted vs. observed spawner counts was 0.9999. 151 
Inspection of univariate distributions of draws from the MCMC chains showed even 152 
univariate normal distributions for the key parameters 𝛽" and 𝜇%   and bivarariate 153 
distributions (Figure 8 and Figure 9). Trace plots of MCMC draws for those same 154 
parameters showed a random and even distribution around 0 (Figure 10 and Figure 11). 155 

Conversion rates 156 

The relationship between conversion rates and water year type variable was generally 157 
positive with a wet year indicating a higher conversion rate (Figure 4). This is because the 158 
random year effect 𝛽#!, by design, absorbs much of the error not accounted for by the 159 
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fixed effect parameter 𝛽". Key diagnostic parameters and their estimated value are in Table 160 
2. 161 

Forecasts 162 

All covariates performed similarly for forecasting for Battle Creek, with temperature having 163 
slightly less variability around forecasts than the other covariates. Water year type showed 164 
high variability for predicting wet years, and the least variability using passage index (Figure 165 
6).  166 

 167 

Results in the context of the SRJPE 168 

The results show that the model is able to fit and forecast using a discrete forecasting 169 
variable (water year type) and estimate a conversion rate where streams have the 170 
necessary data. In years where a stream has upstream passage data but no spawner 171 
survey (i.e. either early in the season, before the spawner survey, or circumstances meant 172 
that no spawner survey could be performed that year) the P2S model could be used to 173 
forecast spawner counts. Further, in instances where monitoring data is incomplete, the 174 
P2S can be used to predict spawner abundance and fill in those data gaps. There are 175 
several such years for Battle and Clear Creek, and for Battle Creek the model performs 176 
well enough that we could fill in those data with P2S estimates (Table 4). However, for 177 
Clear Creek we would want to adjust the model to better account for years where spawner 178 
count exceeds passage estimates before implementing this method. Finally, our 179 
conversion rate can be used to support analyses of prespawn mortality or lifecycle 180 
modeling in the future. 181 

The model is sensitive to years where upstream passage exceeds spawner count, which 182 
can happen when upstream passage data collection is affected by high flows and/or other 183 
processes that cause fish to be missed. Clear Creek is a good example of this: spawner 184 
counts don’t always exceed upstream passage counts and so the estimated conversion 185 
rate is above 1 (Figure 4 and Figure 5).  186 

There are several potential pathways to better understanding and incorporating 187 
observation error (i.e. error in upstream passage estimates) into the model. Some streams 188 
in the SRJPE use a generative additive model (GAM) to interpolate upstream passage 189 
estimates and produce confidence intervals; however, these are not included for every 190 
stream and documentation and methods are not available for each stream. If we can 191 
access confidence intervals or a measure of error (standard deviation) for each year of 192 
upstream passage data for a stream, we can easily modify the P2S to account for error in 193 
the predictor variable of upstream passage via a state-space model framework. This 194 
requires additional data; however, it is a potential pathway to reducing the impact of 195 
anomalous years on P2S performance. 196 
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Other future improvements include running the model on Deer and Mill Creeks when the 197 
data are ready.  198 
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Figures 199 

 200 

Figure 2. Observed annual spring-run Chinook salmon spawner counts (redd surveys for 201 
Battle and Clear Creeks) and upstream passage counts for three streams on the 202 
Sacramento River. 203 

 204 
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 205 

Figure 3. Parameter structure used in the model. The conversion rate of upstream passage 206 
to spawner count is composed of a fixed effect, an environmental covariate, and a random 207 
year effect. 208 

 209 

Figure 4. Conversion rates plotted by stream, with points colored by water year type (dry vs. 210 
wet). 211 
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 212 

Figure 5. Relationship between upstream passage abundance and spawner abundance as 213 
indexed by redd counts of snorkel swims (holding) for battle creek. The points represent 214 
the data used in the model. The black solid line is the conversion rate from passage-215 
spawners under average covariate conditions (water year type = 0 or 1 for dry and wet 216 
classes, respectively). The shaded grey area is the 95% credible interval of that average 217 
conversion rate. The red vertical lines represent predictions of spawner abundance from 218 
the model. In this example the red lines only show up for the wet year type, as the dry year 219 
type is coded as 0. The black dashed-line is the 1:1 line (upstream passage = spawners). 220 
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 221 

Figure 6. Forecasting for water year type, temperature, and flow. The dot shows the 222 
predicted spawner count using across-year mean upstream passage; the error bars show 223 
95% confidence intervals of the prediction. The null model did not converge for any stream. 224 
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 225 

Figure 7. Predicted vs. observed spawner counts. 226 

 227 

 228 

Figure 8. Plot matrix showing univariate marginal distributions for the fixed effect parameter 229 
β1 and mean random year effect parameter μβ0 for Battle Creek in top left and bottom right. 230 
Top right and bottom left show bivariate distributions as scatterplots. Model was fit using 231 
water year type as the environmental covariate. 232 

𝛽"	

𝜇!!	
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 233 

  234 

 235 

Figure 9. Plot matrix showing univariate marginal distributions for the fixed effect parameter 236 
β1 and mean random year effect parameter μβ0 for Clear Creek in top left and bottom right. 237 
Top right and bottom left show bivariate distributions as scatterplots. Model was fit using 238 
water year type as the environmental covariate. 239 

𝛽"	

𝜇!!	
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 240 

 241 

Figure 10. Trace plots of Monte Carlo Markov Chain (MCMC) draws for fixed effect 242 
parameter β1 and mean random year effect parameter μβ0 on Battle Creek. Model was fit 243 
using water year type as the environmental covariate. 244 

 245 

 246 

 247 

Figure 11. Trace plots of Monte Carlo Markov Chain (MCMC) draws for fixed effect 248 
parameter β1 and mean random year effect parameter μβ0 on Clear Creek. Model was fit 249 
using water year type as the environmental covariate. 250 

𝜇!!	𝛽!	

𝜇!!	𝛽!	

𝛽!	 𝜇!!	
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Tables 251 

Table 1: Sample size of datasets for use in the Passage-to-Spawner model for four 252 
tributaries. The sample size column refers to the number of years where upstream passage 253 
and a redd data are both available. 254 

Stream Sample Size 
Battle Creek 21 
Clear Creek 20 

 255 
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Table 2: Parameter estimates produced by fitting the passage to spawner STAN model to all combinations of streams and 256 
covariate types (𝑋!). The model was fit to each stream with a null covariate for comparison, but these models did not 257 
converge by the 𝑅A statistic (𝑅A > 1.05). Only parameter used to assess the impact of an environmental covariate on the 258 
conversion rate are reported here: the proportion of variance explained by the fixed effect (𝑅&), the fixed effect covariate (𝛽"), 259 
and the forecasted spawner abundance. This forecast is produced using the average environmental covariate (or a dry year for 260 
water year type) or using the average plus one standard deviation (or a wet year for water year type) in the prediction.  261 

 Parameter Stream Mean Median 
Standard 
deviation 25% CI 95% CI Covariate 

𝑅& of fixed effects Battle Creek 0.54 0.56 0.21 0.14 0.89 Water year type 
𝑅& of fixed effects Battle Creek 0.52 0.54 0.2 0.14 0.87 Maximum flow 
𝑅& of fixed effects Battle Creek 0.52 0.55 0.19 0.13 0.84 Growing degree days 
𝑅& of fixed effects Battle Creek 0.53 0.55 0.21 0.14 0.88 Passage index 

𝛽" Battle Creek 0.15 0.15 0.37 -0.6 0.87 Water year type 
𝛽" Battle Creek 0.01 0.01 0.2 -0.39 0.42 Maximum flow 
𝛽" Battle Creek -3.90E-01 -3.90E-01 1.10E-01 -6.10E-01 -1.70E-01 Growing degree days 
𝛽" Battle Creek 0.04 0.04 0.15 -0.25 0.35 Passage index 
𝜇$!  Battle Creek 0.21 0.2 0.04 0.13 0.3 Water year type 
𝜇$!  Battle Creek 0.21 0.21 0.04 0.15 0.3 Maximum flow 
𝜇$!  Battle Creek 0.21 0.21 0.02 0.17 0.26 Growing degree days 
𝜇$!  Battle Creek 0.21 0.21 0.04 0.14 0.3 Passage index 
𝜎$!  Battle Creek 0.63 0.6 0.15 0.4 0.99 Water year type 
𝜎$!  Battle Creek 0.64 0.61 0.15 0.41 1 Maximum flow 
𝜎$!  Battle Creek 0.39 0.37 0.11 0.24 0.65 Growing degree days 
𝜎$!  Battle Creek 0.63 0.61 0.16 0.41 1.01 Passage index 

Forecasted Spawner 
Abundance - average Battle Creek 127.3 100.64 122.65 26.09 389.58 Water year type 
Forecasted Spawner 
Abundance - average Battle Creek 133.39 105.52 120.73 27.17 400.19 Maximum flow 
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Forecasted Spawner 
Abundance - average Battle Creek 116.61 107.14 53.83 45.72 244.24 Growing degree days 
Forecasted Spawner 
Abundance - average Battle Creek 136.53 103.68 1339.34 26.27 398.24 Passage index 
Forecast Spawner 
Abundance - average 
+ 1 sd Battle Creek 150.69 116.98 143.69 27.65 475.91 Water year type 
Forecast Spawner 
Abundance - average 
+ 1 sd Battle Creek 138.55 107.44 134.39 25.79 434.67 Maximum flow 
Forecast Spawner 
Abundance - average 
+ 1 sd Battle Creek 79.21 72.07 38.18 29.84 170.43 Growing degree days 
Forecast Spawner 
Abundance - average 
+ 1 sd Battle Creek 145.66 108.04 2021.49 27.44 423.45 Passage index 
𝑅& of fixed effects Clear Creek 0.48 0.46 0.1 0.33 0.74 Water year type 
𝑅& of fixed effects Clear Creek 0.47 0.47 0.08 0.33 0.67 Maximum flow 
𝑅& of fixed effects Clear Creek 0.48 0.48 0.07 0.34 0.64 Growing degree days 
𝑅& of fixed effects Clear Creek 0.47 0.46 0.09 0.32 0.72 Passage index 

𝛽" Clear Creek 0.52 0.52 0.5 -0.48 1.51 Water year type 
𝛽" Clear Creek 0.28 0.28 0.22 -0.16 0.71 Maximum flow 
𝛽" Clear Creek 4.40E-01 4.40E-01 5.40E-01 -6.30E-01 1.52E+00 Growing degree days 
𝛽" Clear Creek -0.85 -0.86 0.68 -2.18 0.5 Passage index 
𝜇$!  Clear Creek 0.51 0.49 0.15 0.28 0.85 Water year type 
𝜇$!  Clear Creek 0.58 0.57 0.14 0.35 0.89 Maximum flow 
𝜇$!  Clear Creek 0.68 0.65 0.2 0.37 1.15 Growing degree days 
𝜇$!  Clear Creek 0.52 0.51 0.13 0.31 0.83 Passage index 
𝜎$!  Clear Creek 0.9 0.87 0.2 0.6 1.38 Water year type 
𝜎$!  Clear Creek 0.89 0.86 0.2 0.6 1.35 Maximum flow 
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𝜎$!  Clear Creek 0.92 0.89 0.2 0.62 1.4 Growing degree days 
𝜎$!  Clear Creek 0.88 0.85 0.2 0.58 1.35 Passage index 

Forecasted Spawner 
Abundance - average Clear Creek 181.18 109.52 451.37 16.09 753.33 Water year type 
Forecasted Spawner 
Abundance - average Clear Creek 202.17 127.03 395.18 19.74 803.74 Maximum flow 
Forecasted Spawner 
Abundance - average Clear Creek 248.6 145.94 1558.34 20.91 1031.17 Growing degree days 
Forecasted Spawner 
Abundance - average Clear Creek 180.39 113.7 308.73 17.92 732.58 Passage index 
Forecast Spawner 
Abundance + 1 sd Clear Creek 316.9 183.9 787.67 24.71 1369.33 Water year type 
Forecast Spawner 
Abundance + 1 sd Clear Creek 274.87 168.1 686.14 24.89 1116.57 Maximum flow 
Forecast Spawner 
Abundance + 1 sd Clear Creek 544.64 225.21 12563.55 21.39 2456.03 Growing degree days 
Forecast Spawner 
Abundance + 1 sd Clear Creek 111.41 48.33 581.28 4.44 546.59 Passage index 

262 
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Table 3: Parameter estimates from fitting the model to water year type for each tributary. 263 

Parameter Stream Mean 
Standard 

Error (mean) 
Standard 
deviation 2.5% 50% 

97.5
% 

𝜇$!  Battle 
Creek -0.96 0.001 0.18 -1.32 -0.96 -0.61 

𝜎$!  Battle 
Creek 0.58 0.001 0.13 0.39 0.56 0.89 

𝛽" Battle 
Creek 0.20 0.003 0.33 -0.47 0.20 0.86 

𝑅& of fixed effects Battle 
Creek 0.55 0.001 0.21 0.14 0.58 0.89 

𝜇$!  Clear 
Creek -0.03 0.002 0.27 -0.57 -0.03 0.51 

𝜎$!  Clear 
Creek 0.87 0.001 0.19 0.59 0.84 1.33 

𝛽" Clear 
Creek 0.45 0.004 0.47 -0.49 0.45 1.38 

𝑅& of fixed effects Clear 
Creek 0.47 0.000 0.10 0.32 0.46 0.74 

Table 4: Years in adult monitoring timeframe where data is missing and P2S could be used 264 
to fill in abundance estimates. 265 

Stream Year Data Type Reason for Exclusion 

Battle Creek 2004 Redd survey Missing reaches 1, 5 and 6 

Battle Creek 2015 Redd survey Missing reaches 3, 5, and 6 

Battle Creek 2017 Redd survey Missing reaches 2, 3, 5, and 6 

Battle Creek 2018 Redd survey Missing reaches 3, 5, and 6 

Clear Creek 2018 Upstream passage Missing March/April 

Clear Creek 2019 Upstream passage Missing March/April 

Clear Creek 2000 Redd survey Missing reach 3, 6, and partial coverage on 5 

Clear Creek 2020 Redd survey Only sampling reach 6 and 7 

   266 
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Appendix A: Data Aggregation and Criteria 267 

Data completeness, quality, and availability varied across streams. The P2S model could 268 
conceivably be applied to Battle Creek, Clear Creek, Mill Creek, and Deer Creek because 269 
they had robust spawner count data (redd surveys for Battle, Clear, and Mill; holding 270 
surveys for Deer) and upstream passage data. However, Deer and Mill Creek survey data 271 
are in the final stages of QA/QC and so for the purposes of model development and model 272 
review, only Battle and Clear Creek are included in P2S analyses here. 273 

For the remaining streams in the JPE, other methods were used to get an estimate of 274 
spawner abundance. Butte Creek and Feather River both had high quality carcass surveys 275 
and spawner abundances were estimated using a Cormack Jolly-Seber mark-recapture 276 
model. Yuba River had upstream passage data and performs carcass surveys but only had 277 
CJS estimates for four years (2014, 2015, 2019, and 2020). Because of these limitations, 278 
Yuba River spawner abundances were estimated directly from upstream passage data - to 279 
account for potential failures in the video capture systems, the Yuba River monitoring 280 
teams used a generalized additive model (GAM) to produce estimates for each year. 281 

The CJS and GAM were conducted by the stream monitoring programs themselves and 282 
results of the CJS model and upstream passage estimates were provided by staff directly 283 
for Butte Creek, Feather River, and Yuba River. The specific methods applied in these 284 
streams are available (Butte and Feather: unpublished reports; Yuba: Poxon, B., P. 285 
Bratovich. 2020. Lower Yuba River Vaki Riverwatcher Chinook Salmon Passage and Run 286 
Differentiation Analyses. HDR). 287 

  288 

https://www.calfish.org/ProgramsData/ConservationandManagement/CentralValleyMonitoring/SacramentoValleyTributaryMonitoring/ButteCreek.aspx
https://deltacouncil.ca.gov/pdf/science-program/fact-sheets/2020-10-06-monitoring-chinook-salmon.pdf
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Appendix B: P2S Covariate Construction 289 
This appendix describes the process used to select the form of each environmental 290 
covariate used in P2S alternative models from among various possible configurations for 291 
each environmental variable available for modeling. Differences between this first round of 292 
covariate construction and the second round of alternative model building and selection 293 
are described in Table 1. 294 
 295 
Table 1. Description of analyses performed to explore and select covariates for use in the 296 
P2S model. 297 

Round Model Metrics Covariate 
structure 

Response 
variable 

1 Linear 
regression 

R2, visual inspection of 
linear regression plots 

Many dilerent 
approaches to 
summarizing 
flow, 
temperature, 
passage, etc. 

Simple pre-spawn 
survival 
(spawner/passage 
abundance ratio) 

2 P2S Bayesian R2 (fixed elects), 
magnitude of estimate 
of b1 (fixed elect 
covariate), variation in 
predicted spawner 
abundance 

One approach 
to summarizing 
flow, 
temperature, 
passage, etc. 

Modeled passage 
to spawner 
conversion rate 
(Ry) 

 298 
Calculating Prespawn Survival 299 

Prespawn survival, or the proportion of adults that survived from upstream passage to 300 
spawn, was calculated as spawner count divided by upstream passage estimate. When we 301 
were using redd counts as spawner count, we assumed a 50/50 sex ratio and multiplied 302 
redd count by 2 to get a full spawner count. Generally, one redd per female is a reasonable 303 
assumption although the P2S model left the possibility open for more than one redd per 304 
female (Murdoch et al., 2009). This produced values of prespawn survival that exceeded 1 305 
for some years on some streams, which could be attributed to error in upstream passage 306 
estimates. 307 

Environmental Covariates 308 

Candidate covariates were derived from five general variables that were available from 309 
monitoring programspredict prespawn survival: flow, temperature, water year type, 310 
upstream passage timing, and upstream passage index (i.e. the magnitude of fish 311 
escapement, which serves as a proxy for density-dependent effects, habitat availability, 312 
etc.). We identified these general variables based on a literature review and suggestions 313 
from the SRJPE Modeling Advisory Team (MAT). 314 
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For most of these variables, we constructed multiple summary statistics for potential use 315 
as covariates in the P2S models: 316 

- Temperature 317 

o Proportion of days exceeding a temperature threshold – calculate the 318 
proportion of days within migratory (March-May) and holding (May-July) 319 
months that exceed a threshold of 20 degrees C (Marine & Cech 2004,  320 
Keefer et al., 2018). Temperature data were pulled from the mainstem for 321 
migratory calculations and the tributaries for holding. 322 

o Growing Degree Days (GDD) – subtract a “base” temperature of 20 degrees 323 
C from the temperature measured in the mainstem (migratory, March-May) 324 
or tributary (holding, May-August) and then sum that value across all days 325 
within the period. Then sum across migratory and holding data to obtain a 326 
total GDD value. This accounts for the cumulative exposure to thermal 327 
stress over a threshold of 20 degrees C (Keefer et al., 2018).  328 

- Flow 329 

o Mean and maximum flow over migratory (March-May) and holding (May-330 
August) periods. 331 

- Upstream passage timing 332 

o Median, mean, and minimum week of passage timing for each tributary and 333 
year. 334 

- Water year type (wet or dry) 335 

o Wet includes “wet” and “above normal” years; dry includes “below normal”, 336 
“dry”, and “critical”. 337 

- Passage magnitude (“Passage index”) 338 

o The total number of upstream passage estimated for each year 339 

Statistical Importance of Covariates 340 

To determine which form of variables to use in P2S modeling, we used simple linear 341 
regressions of candidate environmental covariates against prespawn survival calculated 342 
as described above. We found we did not have enough data points for each stream to test 343 
multivariate regressions and instead we fit a single linear regression of prespawn survival 344 
and each predictor variable and compared adjusted R2 values, where the highest R2 would 345 
indicate the strongest fit among multiple forms of each environmental covariate. 346 

 347 
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Results 348 
 349 
Passage timing produced the highest R2 in linear regression against prespawn survival for 350 
both Battle (minimum passage timing) and Clear (median passage timing) Creeks, 351 
followed by growing degree days for Battle Creek and proportion of days exceeding 352 
temperature threshold for Clear Creek (Table 2). However, R2 for Clear Creek were low 353 
across all covariates indicating a weak relationship as can also be seen in the figures.  354 
We selected one summarization method for each environmental covariate type for testing 355 
in the P2S models. Because Clear Creek had more anomalous years than Battle (years 356 
where spawner counts exceeded upstream passage), and because the R2 were low for all 357 
values, we based these selections on R2 and data availability with respect to Battle Creek. 358 
This resulted in the following covariates: growing degree days (for temperature), maximum 359 
flow (for flow), water year type (for a discrete variable), and passage index. Though passage 360 
timing had the highest R2 value, data was very limited because for many years and streams 361 
passage data was provided summarized at the yearly level, and so we did not use it in the 362 
next round of analyses. 363 
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Table 2: Adjusted R2 values  407 
R2 (against prespawn survival) 

Covariate 
Battle 
Creek 

Clear 
Creek 

Minimum passage timing 0.309 0.059 
Growing degree days 0.222 0.061 
Mean passage timing 0.168 0.135 
Median passage timing 0.151 0.188 
Proportion days exceeding 
threshold 0.067 0.137 
Maximum flow 0.017 0.044 
Water year type 0.000 0.084 
Mean flow 0.000 0.064 

 408 
  409 



1/28/2025 
 

Appendix C: Leave One Out (LOO) analysis 410 
LOO cross-validation summary 411 
 412 
LOO and widely applicable information criterion (WAIC) estimate “pointwise out-of-413 
sample prediction accuracy from a fitted Bayesian model” (Vehtari et al 2016). Using the 414 
LOO R package, we calculate the Pareto-smoothed importance sampling (PSIS) LOO for 415 
Battle and Clear Creek Passage to Spawner models fit to all environmental covariates 416 
(Vehtari et al 2024). These analyses were performed in response to feedback about out-of-417 
sample prediction accuracy of the Passage to Spawner model in the context of the Spring 418 
Run Juvenile Production Estimate and to supplement environmental covariates selection. 419 
We present here two analyses addressing these points: 420 
 421 
We used LOOIC to compare covariates for Battle and Clear Creek and found that in all 422 
instances, water year type performed better than a null covariate, but continuous 423 
covariates (temperature, flow, passage index) weren’t consistently better or worse than 424 
null or water year type across streams. To compare covariates, datasets had to be 425 
truncated for years where all covariates were available, which reduced the sample size for 426 
Clear Creek for continuous comparisons to five years (restricted by the availability of 427 
median passage timing data). Covariate selection also needed to consider data availability 428 
(i.e. if we used that environmental covariate, how many years of data would be available to 429 
feed into the model?) and forecasting in the SRJPE (i.e. a discrete variable like water year 430 
type has far fewer assumptions than using a forecasted continuous variable, like 431 
temperature, to then predict spawner count).  432 
 433 
We also fit Battle and Clear Creek models using water year type for the full dataset (21 data 434 
points for Battle, and 19 data points for Clear). For these models, we present expected 435 
differences in predicted values and effective parameter sizes, which allows for analysis of 436 
specific years in the LOO framework and evaluation of model specification (effective 437 
parameter size). This adds additional context to our understanding of anomalous years 438 
(years where our data show spawner count being greater than upstream passage count) 439 
and their influence on predictive accuracy of the model. Our results suggest that improving 440 
modeling of those anomalous years will improve the predictive capacity of P2S. 441 
 442 
Details 443 
 444 
Cross validation re-fits the model to different data training sets. Traditional LOO uses 445 
importance sampling but is noisy; PSIS LOO allows for calculating importance weights that 446 
might otherwise be inappropriate by fitting a Pareto distribution to the upper tail of the 447 
importance weight distribution. PSIS LOO is “more robust in the finite case with weak 448 
priors or influential observations” (Vehtari et al 2016) compared to WAIC. The expected log 449 
predictive density (elpd), or prediction accuracy, for a new dataset, the effective number of 450 
parameters (p_loo), and the leave-one-out information criteria (LOOIC) are all reported 451 

https://mc-stan.org/loo/index.html
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alongside standard errors. In a model comparison framework, a lower LOOIC means that 452 
has better prediction accuracy for a new dataset.  453 
 454 
We used LOO to compare performance of the models fit to Battle and Clear Creeks for 455 
water year type, median passage timing, growing degree days, maximum flow, passage 456 
index, and a null variable (all zeros). For all models to be fit to comparable datasets, we 457 
truncated the dataset to where we had data for each covariate, which reduced the sample 458 
size to 7 years of data for Clear Creek and 17 years for Battle Creek.  459 
 460 
We also report pointwise (for each data point, or year) prediction accuracy and effective 461 
parameter size for the model fit to Battle and Clear Creeks using water year type as an 462 
environmental covariate. These statistics allow for more in-depth analysis of each data 463 
point’s contribution to prediction accuracy – i.e. if the data point from 2004 is left out for 464 
Battle Creek, what is the model’s ability to predict that data point accurately? 465 
 466 
Results 467 
 468 
The table below shows the LOOIC (or prediction accuracy) calculated for each covariate 469 
for Battle and Clear Creeks. Based on this statistic, the model with the best out-of-sample 470 
prediction fit is growing degree days for Battle and water year type for Clear Creek, though 471 
considering standard error (SE in the table) reduces the distinction between the different 472 
covariates. Out of the full dataset for Battle Creek, growing degree days has 18 years of 473 
data compared to 21 years of data for water year type. Continuous variables perform better 474 
than water year type for both streams which makes sense because they are a more direct 475 
measure of environmental conditions than a discrete variable like water year type, though 476 
again the SE values show that there is minimal distinction between covariates when 477 
incorporating uncertainty in LOOIC values. However, if the P2S model were to be approved 478 
for forecasting in the SRJPE, forecasted continuous environmental variables would need to 479 
be used which would introduce more error. For both Battle and Clear Creeks water year 480 
type performed better (a lower LOOIC) than the null model, and a discrete variable like 481 
water year type would introduce less error in a forecasting context, if proposed. All models 482 
performed very similarly for Clear Creek. 483 
  484 

Battle Creek (n = 17) 
Covariate LOOIC SE 
Growing degree days 144.35 4.88 
Water year type 145.91 4.21 
Median passage timing 146.11 4.74 
Passage index 146.73 4.54 
Maximum flow 147.59 5.03 
Null 147.66 4.85 

Clear Creek (n = 7) 
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Water year type 58.82 4.80 
Median passage timing 58.96 4.63 
Passage index 59.02 5.04 
Maximum flow 59.57 4.32 
Null 59.79 4.70 
Growing degree days 60.11 4.78 

 485 
 486 
The table below shows pointwise expected log predictive density (theoretical expected 487 
error between the predicted and true value), the Monte Carlo standard error (MCSE), and 488 
the LOOIC (which is the -2 * ELPD) for each data point (year) for Battle and Clear Creek.  489 
 490 

Battle Creek (n = 21) Clear Creek (n = 19) 

Year ELPD 
ELPD 
MCSE LOOIC Year ELPD 

ELPD 
MCSE LOOIC 

2001 -3.72 0.08 7.44 2000 -3.03 0.05 6.05 
2002 -4.14 0.06 8.28 2002 -4.98 0.14 9.97 
2003 -4.76 0.09 9.52 2003 -4.34 0.11 8.67 
2004 -3.81 0.12 7.62 2004 -4.14 0.07 8.28 
2005 -3.91 0.05 7.82 2005 -4.86 0.13 9.71 
2006 -4.48 0.06 8.97 2006 -4.49 0.08 8.98 
2007 -4.55 0.09 9.1 2007 -4.56 0.19 9.11 
2008 -4.3 0.14 8.59 2008 -4.45 0.13 8.9 
2009 -4.24 0.07 8.49 2009 -4.22 0.07 8.44 
2010 -5.03 0.14 10.06 2010 -3.69 0.14 7.37 
2011 -4.29 0.15 8.58 2011 -3.73 0.12 7.46 
2012 -5.36 0.06 10.73 2012 -3.97 0.14 7.93 
2013 -4.6 0.08 9.21 2013 -5.1 0.08 10.2 
2014 -4.66 0.22 9.32 2014 -5.06 0.08 10.12 
2015 -4.25 0.12 8.5 2015 -4.8 0.15 9.61 
2016 -3.98 0.06 7.96 2016 -3.59 0.07 7.18 
2017 -3.42 0.08 6.84 2017 -3.54 0.12 7.08 
2018 -3.65 0.09 7.31 2018 -3.87 0.17 7.75 
2019 -3.86 0.1 7.72 2019 -4.66 0.07 9.32 
2020 -5.02 0.23 10.05     
2021 -4.7 0.12 9.39     

 491 
Some years have a higher LOOIC than others. For Clear Creek, almost all the years with a 492 
LOOIC over 9 (highlighted in grey) are “anomalous years”, or years where spawner count 493 
exceeds upstream count, indicating these could be years that reduce the prediction 494 
accuracy of the model. 2008 and 2013 are the only years with higher LOOICs (highlighted in 495 
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grey) for Clear Creek that are not anomalous. For Battle Creek, 2010, 2012, and 2020 have 496 
the highest LOOICs where 2010 and 2020 are anomalous and 2012 is much higher for both 497 
upstream and redd counts compared to the rest of the dataset.  498 
 499 
For years where survey data is inconsistent, the passage to spawner model could be 500 
utilized to “fill in the gaps” – i.e. predict spawner counts where we have passage 501 
estimates. For example, in some years for Battle Creek some reaches were not surveyed. 502 
These years (2004, 2015, 2017, and 2018) are shown in the table above with their LOOIC 503 
values, showing that the theoretical expected predictive accuracy is not as high as the 504 
“anomalous” years indicating relatively better accuracy. 505 
 506 
See the figure below for raw data for both streams (a 1:1 line is shown in red): 507 
 508 

 509 
 510 
 511 
Finally, the table below shows the effective parameter number (p_loo) for Battle and Clear 512 
Creeks. The number of parameters in the model is 24 for Battle and 22 for Clear (a random 513 
year effect for each year in the model, which is 21 for Battle and 19 for Clear), the intercept, 514 
the standard deviation of the random year effect, and the fixed effect parameter. For both 515 
Battle and Clear Creeks and across all covariates, the effective parameter number is less 516 
than the total number of parameters used (24 or 22). 517 
 518 
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 519 
 Battle Creek Clear  Creek 
Covariate p_loo SE p_loo SE 
Water year type 15.36 0.74 6.32 0.15 
Maximum flow 16.24 0.73 6.70 0.34 
Growing degree days 14.23 1.24 6.96 0.40 
Median passage 
timing 15.45 0.86 6.39 0.23 
Passage index 15.82 0.48 6.43 0.20 
Null 16.26 0.96 6.80 0.29 

 520 
  521 
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